

There's a longstanding tradition in Bristol, RI, of building both boats and their high-tech equipment night-and right at the leading
edge of technology. Today, the Moore Brothers Company is carrying that heritage forward by creating bespoke omposites, all built on site by a handpicked staff from the highest echelon doubled in number since 2020.
'The business that used to be ju brothers and a couple of workers now mploys 25 people,' Oliver Moore explains, when he finally sits down at a desk completely hidden under several layers mposite technicians onthe floor To 18 Regent's production goals and maintain our own business growth we need to be up to around 25 in the next year.' You can imagine in the Seahorse office esee a lot of cutting edge projects Ut REGENT (Regional Electric Groun precise) stopped us in our tracks.

uilding boats that fly

Regent builds all-electric seagliders, a new category of maritime vehicle designed to perate exclusively over water for highperate in three modes: float, hydrofoil and flight in ground effect, moving passengers and goods from one coastal destination to another. In the spring of

2021 the company commissioned Moo Brothers to build their quarter scale remotecontrolled p in December 2021.
'It was the first whole vehicle we'd ever built,' Moore says, adding that the size was a Goldilocks-style compromise between being small enough to components and large enough to be a valid testbed. 'That's how they ended up with an 18 -foot wingspan for their technology demonstrator. That dimension is critical because asa Wig
(Wing in Ground effect) vehicle it flies withina
wingspan above the surface of the water Regent already has a $\$ 7 \mathrm{~B}$ backlog of orders for their full-sized models. Their models include a 12-passenger and two 65 -foot wingspan and a next generation $50+$ passenger seaglider named Monarch. These have ranges of up to 160 nautical miles using current battery technology. That's a major upgrade in transportation efficiency, whether it's along a crowded coastline or for island-hopping.
members on the project: 'Bryan Baker and Andrew Gaynor both came straight out of the America's Cup world. Bryan is
the chief engineer of vehicle performance and Andrew is the structures lead. 'Bryan was with Oracle and then Team Ineos in the last cup. He is one of the few people in the world who has designed both lectric aircraft and high-performance lacing yachts. He did a stint at Aurora light Sciences which is where he connected with a handful of the Regent herospace worlds.
Andrew was with Oracle for several cup cycles where he onnected with Bryan and then was lead rig designer for Amer Mag. Andrew and have sailed A-class -class cats together for 12 years and we worked together during the last American Magic build.' Bryan Baker takes up the story: 'Recen have been critical for Regent. The company is developing a fully electric Wing-in-Ground-Effect (WIG) vehicle, coined the seaglider. Limited only by oday's battery technology, Regent aims develop a venicle capable of reachin is performance we have todevelo treamlined hull and reduce our take-off drag. Most float planes achieve take-off by generating speed on a planing hull form
which produces significant drag. The planing hull form requires relatively flat water and significant thrust to achieve take-off speed.
emand by incorporating three this thrust operation: from the hull (float) to the hydrofoils (foil) to the aero-wing (flight) This transition affords us a two-stage drag reduction. The vehicle first reduces wetted area from the hull clearing the water and off onto the aero wing This transition directy impacts our power demands keeping us in a favourable range and weight for current battery
technology. Akin to the take-off of an AC75, we concentrate on reducing hull hull form at a low Froude number Our front foil positioned closest to our centre of gravity provides the majority of our hydrodynamic lift.
'We control this lift by actuating symmetric flaperons on the foils which provide lift and, if articulated at different angles, can control roll. In the most were attempted to add flaps to the hydrofoils. The hinge position, stiffness of the foils, fairness of joints or skins and hydraulic actuation all played a pivotal role in drag reduction, avoiding cavitation at higher speeds and aiding controlabil critical in developing a safe and reliable hydrofoil system. On landing we rely on the hull to provide our deceleration as the foils will be retracted into the hull body. Again, lessons learned from retraction systems developed on the AC50 provide a reliable retraction system.'

Aero and hydro: two mindset

 Baker and Gaynor bring maritime experience to an impressively experienced and talented team of aerospace engineers. Founders BillyThalheimer and Mike Klinker are both MIT graduates who worked with chief engneer Dan Cottrell at Aurora Aigh
Sciences, a research subsidiary of Boeing.
The meshing of the aerospace and AC engneers has been really interesting to watch,' Moore says. 'In the marine world with real world testing. We stopped putting test pilots up in experimental aircraft to see what would happen a long time ago and for very good reasons. As a result the marine engineers have a deep pool of rea-world experience to draw exceptionaly dilisent desifn proess of validating their models and simulations to make sure that chances of failure are within very clearly defined acceptable ranges. It was impressive to watch the two mentalities mesh and the result was a very quickly executed vehicle that has The collaboration has created a system

Above: three of the larger ground-effect craft that came out of the Soviet Union Ekranoplan programme between 1950 and 1984 - from which a development path the Regent groud-elt cratcan be traced. Smaller non-ilitary ground-effe craft continue to be built in modern-day Russia, but a huge military programme programme's primary sponsor. When flying within 20 m of the land or water, ground effect dramatically increases effective aspect ratio, allowing for stubby short wings, efficiency improved further with these large endplates. In the Ekranoplan programme initian benefitting from much lighter modern construction methods. However... these brutal ooking Soviet craft successfully met the brief... and some were very very fast. The legendary Caspian Sea Monster (centre) was almost 100 m in length, weighed over $50-$ tonnes and could comfortably exceed 400 knots . It also featured as standard a
that is agile with strong checks and balances that ensure both safety and repeatability.

t's a boat, not a plane

ound effect aeroplanes have been round for a long time but Moore notes hat Regent is combining new technology a fresh approach. 'Flight control ystems have been developing so rapidly the last few decades. Weve all seen not actually flying the craft, the computer
is, and you are telling it which way to go. The electric propulsion also adds an interesting element. It allows you to use many small propeliers instead of a few
big ones. This distributes the flow from the thrust evenly over the wing creating a blown wing effect like apparent wind in sailboats giving more lift earlier and allowing for slower take off speeds. Given that Regent's design is a WIG that lands on her hul, she is technically US Coast Guard. This leads to fewer

Hound:
Improving a classic
$\stackrel{\rightharpoonup}{4}$ When the owner of Hound, a 59 ft Aage Nielsen sloop built by Abeking \& Rasmussen in 1970 , came to Moore Bros for a new carbon mast less than a year before the 2022 Bermuda Race, no one expected what Oliver Moore calls "a pretty cool classic boat" to win her class - thanks in part to the composite bowsprit, rudder, rig and boom that were soon added to the original order.

The mast was designed, built and stepped in less than six months, giving the crew enough time for extensive sea trials before the race. And that new bowsprit supported the A-sails so critical to a Bermuda victory. 'We worked from 3D scans of the whole boat and designed a centreline sprit that fit in with her lines,' Moore says. The bowsprit splits around the forestay and two tack lines run aft.'

One reason for the success was that Moore Bros were included in the in-depth discussions about the owner's overall goals from the very start of the project. 'He wanted to breathe new life into the boat and revitalise her,' Sam Moore says before adding with a chuckle: 'we got a call from the boat captain after the race, saying that the boat felt completely different; "now she just keeps surging!" That means she's actually going forward, not just tipping over.'
The owner was so pleased, he's also ordered a cruising sprit with a bow roller to hold an anchor. 'We had templates based on the 3D scans for the racing bowsprit, but we needed to go "real world" on this one,' Oliver Moore says. "We had to go down to the boat to figure out how to make the anchor fit into such Moore Brothers get-it-done attitude, which has helped increase both their work force and name-recognition so dramatically in the past two years. 86 SEAHORSE

Regent's technical demonstrator is a quarter scale seaglider prototype currently undergoing testing on the Narragansett Bay. The model's wingspan is 18 -feet (5.48 Metres) with an all-up weight of 375 lbs (170kg)
regulatory hurdles than the electric planes other companies are developing. 'The FAA requires you to carry 30 minutes reserve fuel in the daytime make it to an airport, which, when we are talking about short distance flights and batteries, is a major weight penalty. Because this is a boat and it can always land on the water, the Coast Guard doesn't have those requirements.'
There are plenty of wild ideas on the leading edge of any industry, Moore admits, but he believes Regent has a great shot at success. 'The seaglider is
differentiated. It uses existing technology and has demonstrated customer demand - it makes sense.' Design
for the first full-sized seaglider is well under way and the build is scheduled for 2023. Regent is
get-it-done attitude. 'When they started with us,' Moore says, 'they had the general concept reasonably sorted but it was a blank sheet of paper on how
we were going to build it. We dived in and helped them design around available materials and with processes that matched our capabilities. It was an ambitious undertaking but we developed a very strong working relationship to the point that their lead engineer had his own office in our building. Once we had the parts built we transitioned into helping to support their integration testing operations. It didn't matter what the problem was. Brake lines on the trailer? We've got a local trailer guy. Space on the waterfront for testing? We connected them with Halsey Herreshoff and got them up and running here in Bristol. In tracking to a 2025 'Sailing's top engineers to the idea that there is vehicle delivery. always enjoy being a date for the first race And of course, stretched' sailing's top and it is going to happen engineers always enjoy being stretched. As Baker says: 'This project
is a ton of fun. Working with Moore Brothers has been crucial in the rapid development of our 18 ft technology demonstrator. In nine months we hitting 38 kts foiling. We are leveraging both aerospace and maritime knowhow to push electric propulsion technologies. I've been fortunate to work with super-talented people in both these worlds in the AC and on eVTOL projects (eVTOL - Electric Vertical Take-off and Landing Plane). The seaglider is a supercool marriage of these technologies.

Making it happen
Regent originally sought out Moore Bros for their composite expertise, but they've also come to appreciate the company's

project while also maintaining their regular workflow, Moore Brothers are actively recruiting. 'We need to hire several more floor techs,' Moore says. 'The people we've picked up already have some serious experience. Kenny Madeiro brought a crew to us from Hall Spars and the guys we've had with us forever, like Jeff Kent and Mark Raymond are still here. We've been working very hard to
organically build a strong and dedicated crew, and we've put a major focus on a supportive work environment - because in the bespoke composite world, a manufacturer is only as good as the guys on the floor. It doesn't matter how many machines or fancy tools you have; when can't robot your way out of a problem, you need to have some creative problem solvers in your team.'
Finding the right personnel has been their biggest challenge, Swart admits. 'We're always very selective because
synergy is so important. If the right person comes along, we'll find a spot for them. That's going to pay off in the long run'.

One stop composite shop In addition to building boats that fly, Moore Brothers have become New England's go-to place for all things foiling. 'We're working on a new foiling motorboat,' Swart says, though he can't disclose any details. 'There's a surge of R\&D right now, all kinds of weird stuff and we've been involved right from the beginning.'
The reason? Swart credits their unique approach. 'We have a group of engineers that are composite experts, but they also have an entrepreneurial, can-do attitude. So people start coming here not just to have the work done, but to get input into how to improve on what they had in mind. We're sometimes finalising engineering details right on the floor. That draws people, because it turns a company like this into a composite solutions shop.'

That applies to non-foiling parts as well. 'Structural composites; that's where I see people starting to catch on. Someone comes to us for a wheel, but they also need a rudder or a mast.
'As we develop a relationship, they realise that we have a lot broader scope than they first thought. Everyone knows our name now, but they don't always understand how much we can do.'

The $1 / 4$ scale technical demonstrator (seen completed opposite) enables Regent to prove their blown wing aerodynamic design and landing hydrodynamics for
their seaglider and inform a realistic and robust engineering schedule with safety embedded throughout the development lifecycle. Building a test prototype at this large scale also allows many potential full-size build issues to be resolved at an early stage saving cost, time and material wastage later

Masts, repairs and production parts too
When Hall Spars closed their Bristol facility five years ago, it left a big hole in the region's marine industry supply chain. Moore says that "everyone and their mother" told them not to become a spar manufacturing company, but it was hard to ignore such a gaping need. 'So the way we let ourselves get into it was this: we're not a mast company, we're a composite company that can build you a mast if that's what you need. We don't want to try and compete at every price point; we'll only take on projects if we think we can do a great job.' Alongside the Regent project, Moore Brothers are now shipping out pretty much anything that can be built out of composite-rudders, foils, beams, and
around the world. 'There are not many companies that can do that,' Moore says, with justified satisfaction. They build many of Brooklin Boat Yard's prepreg carbon many line drawings covering his desk; specs for a new rudder that will undoubtedly improve the performance and feel of another classic sailing boat. 'Oliver gets super-excited about each project,' Swart adds, 'because he's personally invested. And that's intoxicating. Especially since we are going to continue to bring more people in and grow manufacturing here in Rhode Island.'
By constantly breaking new ground with bespoke composites, Moore Brothers are continuing a long and successful Bristol tradition: building cool stuff right on the leading edge of technology. www.moorebro.co

